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Abstract. Distance metric learning plays an important role in real-
world applications, such as image classification and clustering. Previous
works mainly learn a distance metric through learning a Mahalanobis
metric or learning a linear transformation. In this paper, we propose
to learn a distance metric from a new perspective. We first randomly
generate a set of base vectors and then learn a linear combination of
these vectors to approximate the target metric. Compared with previous
distance metric learning methods, we only need to learn the coefficients
of these base vectors instead of learning the target metric or the lin-
ear transformation. Consequently, the number of variables needed to be
determined is the same as the number of base vectors, which is irrelevant
to the dimension of the data. Furthermore, considering the situation that
labeled samples are insufficient in some cases, we extend our proposed
distance metric learning method into a semi-supervised learning frame-
work. Additionally, an optimization algorithm is proposed to accelerate
training of our proposed methods. Experiments are conducted on several
datasets and the results demonstrate the effectiveness of our proposed
methods.

Keywords: Distance metric learning · Semi-supervised learning ·
Non-smoothed function optimization

1 Introduction

Recent years has witnessed the rapid development of machine learning. As one
of the most important branches of machine learning, distance metric learning
has been widely used in various real-world applications, such as clustering [1],
classification [8,12] and retrieval [6]. In traditional KNN classification problem,
Euclidean distance is used to evaluate the similarity between different samples.
However, Euclidean distance is hard to explore the intrinsic statistical features
which might be estimated from the training data. Considering this drawback
of Euclidean distance, distance metric learning methods are proposed to better
measure the distribution of the training data.
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Previous distance metric learning can be conducted through learning a linear
transformation xi → Lxi or equally learning a Mahalanobis metric M = LLT .
Most of the previous works learn a Mahalanobis metric directly and signifi-
cantly improve the performance of KNN classification, such as relevant com-
ponent analysis (RCA) [2], principal component analysis (PCA) [9], linear
discriminant analysis (LDA) [5], discriminative component analysis(DCA) [7],
information-theoretic metric learning (ITML) [4], regularized distance metric
learning (RDML) [8], distance metric learning of large margin nearest neighbor
(LMNN) [12] and regularized large margin distance metric learning (RLMM)
[10]. However, a Mahalanobis metric is usually time consuming to optimize.
There are two main reasons. First, the Mahalanobis metric is a positive semi-
definite metric. The optimization of a problem with a positive semi-definite con-
straint takes much time to project the target metric onto a positive semi-definite
cone. Second, supposing the dimension of input feature is d, Mahalanobis metric
has d2 variables to be determined. The amount of variables increases dramat-
ically when facing high dimensional data. These two drawbacks cause much
difficulty in controlling the complexity of the method.

In this paper, we propose a novel distance metric learning method to over-
come the above two drawbacks. We first generate a set of base vectors randomly
and then learn a linear combination of these base vectors to approximate the
target metric. Consequently, the number of variables we need to learn is the
same as the number of random base vectors. The number of variables is irrele-
vant to the dimension of data and we can easily control the complexity of our
method by adjusting the number of random base vectors. Additionally, we are
unnecessary to project the target metric onto a positive semi-definite cone. Simi-
alr idea has also been utilized in decomposition-based transfer distance metric
learning (DTDML) [11]. However, DTMDL first learns the source metrics from
additional data of other domains and then decomposes the metrics into base
vectors which might be used to form the target metric. This process is time
consuming and the source domains are usually hard to get in real-world applica-
tions. Compared with DTMDL, our proposed coefficient-based distance metric
learning (CDML) just needs to randomly generate the base vectors which leads
to better generalization ability.

Considering the fact that labeled data are difficult to get in real-world appli-
cations [15], some semi-supervised distance metric learning methods [1,6,10,13]
have been proposed to handle this situation. Take this into consideration, we pro-
pose a novel method to explore valuable information from unlabeled data and
extend our proposed method into a novel semi-supervised framework (S-CDML).
An optimization algorithm is proposed to accelerate the training process. Addi-
tionally, we conduct various experiments on several benchmark datasets and the
results demonstrate the effectiveness of our proposed methods.

The rest of the paper is organized as follows. We introduce the details
of our proposed CDML and S-CDML methods in Sect. 2. In Sect. 3, an opti-
mization algorithm is proposed to solve our problems. Section 4 shows various



588 Z. Wang et al.

experimental results which demonstrate the effectiveness of our proposed meth-
ods. In Sect. 5, we will give a conclusion of our work.

2 Semi-supervised Coefficient-Based Distance Metric
Learning

In this section, we first introduce the details of our proposed coefficient-based
distance metric learning method. Then, we extend it into a semi-supervised
framework. Before we introduce our proposed method, the general framework of
semi-supervised distance metric learning is presented. The objective function of
semi-supervised distance metric learning can be described as follows:

min
A

gl(A) + βgu(A) + λR(A)

s.t. A � 0,
(1)

where A ∈ S
d×d
+ is a positive semi-defined metric in a d × d dimensional space.

gl(A) is a loss function of labeled data, gu(A) is a loss function of unlabeled
data and R(A) is a regularization term of metric A. β and λ are two trade-off
parameters. β is used to balance the influence of labeled data and unlabeled
data. λ is used to control the complexity of the model.

Notice that a positive semi-defined metric A can be decomposed into a linear
combination of a set of base vectors as follows:

A =
∑n

i=1
ciuiuT

i , (2)

where ui ∈ R
d×1 is the i-th random base vector and ci is the i-th entry of

coefficient vector c ∈ R
n. n is the total number of the base vectors. Consequently,

the learning of metric A is equal to the learning of the coefficients of these base
vectors. The objective formulation (1) can be reformulated by replacing metric
A with formulation (2) as:

min
c

gl(c) + βgu(c) + λR(c),

s.t.
∑n

i=1
ci = 1,

(3)

In the following sections, we will give a detailed introduction to the construction
of gl(c), gu(c) and R(c).

2.1 Coefficient-Based Distance Metric Learning

In distance metric learning, pairwise constraint has been widely used [1,11,12].
We use pairwise constraint in our methods to pull the similar pairs close and
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push dissimilar pairs apart. For simplicity and clear notations, two sets of pairs
are introduced:

S = {(xi, xj)|xi and xj are similar , yij = 1},

D = {(xi, xj)|xi and xj are disimilar , yij = −1},
(4)

where xi and xj are two samples in d dimensional feature space, yij denotes
the similarity of the pair (xi, xj). The similar pair set S includes positive pairs
which have the same class label. And the dissimilar pair set D includes negative
pairs which have different labels. The distance between pair (xi, xj) under the
distance metric A is denoted as dA(xi, xj) which can be formulated as:

d2A(xi, xj) = ‖xi − xj‖2A = (xi − xj)TA(xi − xj). (5)

Similar to RDML [8], we adopt hinge loss in gl(c). Additionally, we introduce
a L1-norm regularization term R(c) to guarantee the sparsity of the coefficient
vector. Consequently, the objective formulation of CDML can be expressed as
follows:

min
c

1
N

∑N

k=1
max(0, b − yk

ij(1 − ∥∥xk
i − xk

j

∥∥)2A)) + λ ‖c‖1 ,

s.t.
∑n

i=1
ci = 1,

(6)

where (xk
i , xk

j ) is the k-th sample pair and yk
ij is a pairwise label of (xk

i , xk
j ). N

represents the amount of labeled sample pairs in S and D. For notation simplic-
ity, we denote yk

ij = yk and δk = xk
i − xk

j . So
∥∥xk

i − xk
j

∥∥2

A
=

∑n
i=1 ciδ

T
k uiuT

i δk =
cT hk where hk = [h1

k, ..., hn
k ]T with hi

k = δT
k uiuT

i δk. ui is the i-th random base
vector. Consequently, problem (6) can be rewritten as follows:

min
c

1
N

∑N

k=1
max(0, b − yk(1 − cT hk)) + λ ‖c‖1 ,

s.t.
∑n

i=1
ci = 1.

(7)

2.2 Semi-supervised Coefficient-Based Distance Metric Learning

Considering the situation we don’t have enough labeled samples, we propose a
novel method to construct positive pairs and negative pairs from the distrib-
ution of unlabeled data. The idea of our semi-supervised learning method can
be illustrated in Fig. 1. For each unlabeled sample xi, we use K-NN(K=1) with
Euclidean distance to choose its nearest sample xj . If xi is also the nearest sam-
ple of xj , we denote (xi, xj) as an positive pair and yij = 1. As for negative
pairs, we first find the maximum distance between positive pairs from all classes
and denote the maximum distance as maxdist. A threshold T is defined as:
T = maxdist + ε, where ε is a margin to make our method more robust to the
noise. For each unlabeled input xi, we calculate the Euclidean distance between
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Fig. 1. Two examples of sample pairs in S-CDML. (a) For an unlabeled sample x1,
(x1, x5) and (x1, x6) are two negative pairs while we have no positive pair since the
nearest neighbor of x2 is not x1. d(x1, x4) ∈ (maxdist, maxdist + ε), so (x1, x4) is not
a negative pair. (b) (x1, x2) is a positive pair; (x1, x5) and (x1, x6) are two negative
pairs.

xi and xl which is one sample from the rest of the data. If the Euclidean dis-
tance between xi and xl is larger than T , (xi, xl) is a candidate of negative pairs
and yil = −1. For each unlabeled positive pair, we randomly select 10 unlabeled
negative pairs.

The loss function of semi-supervised part of S-CDML can be formulated as
follows:

gu =
∑N ′

k=1
wkmax(0, b − yk(1 − cT hk)), (8)

where yk and hk have the same formulation as those in supervised part except
that they utilize the pairs from unlabeled data. N ′ is the number of sample pairs
from unlabeled data. wk is the weight of the k-th pair. We set wk = 1

d(k) , where
d(k) is the Euclidean distance of the k-th pair. Then we normalize wk to make
the sum of {wk}N ′

k=1 equals to 1:
∑

k wk = 1. We give larger weights to those
pairs which tend to be closer for the following reasons: if they are positive pairs,
they are more reliable with smaller distance between them; if they are negative
pairs, the closer they approach the threshold, the more attention they should
attract.

We now give the objective function of our proposed semi-supervised
coefficient-based distance metric learning(S-CDML) as follows:

min
c

1
N

∑N

k=1
max(0, b − yk(1 − cT hk))

+ β
∑N ′

k=1
wkmax(0, b − yk(1 − cT hk)) + λ ‖c‖1

s.t.
∑n

i=1
ci = 1

(9)

where we set b = 0.5, β and λ are trade-off parameters.



Semi-supervised Coefficient-Based Distance Metric Learning 591

Algorithm 1. The Optimization Algorithm of Semi-supervised Coefficient-
based Distance Metric Learning

Input: The lagrangian multipliers u1 = u2 = u3 = 1, ρ1 = ρ2 = ρ3 can be
choose from validation set
Output: c
1. initial a = b = c as zero vectors
2. while (not converge) do:
3. at+1 = mina Lρ(a

t,bt, ct,ut)
4. bt+1 = minb Lρ(at+1,bt, ct,ut)
5. ct+1 = minc Lρ(at+1,bt+1, ct,ut)
6. ut+1 = minu Lρ(at+1,bt+1, ct+1,ut)
7. end while

3 An Optimization Algorithm

To solve problem (9), we can integrate the losses of labeled data and unlabeled
data into one formulation, which is shown as the following:

g(c) =
∑N+N ′

k=1
ωkmax(0, 0.5 − yk(1 − cT hk)), (10)

where ωk = 1
N , k = 1, 2, ..., N which means that we give equal weights to all

pairs from labeled data. And ωk = β
d(k) , k = N + 1, N + 2, ..., N + N ′ which has

been introduced in the above section. Consequently, we should optimize a loss
function with the following formulation:

min
c

g(c) + λ ‖c‖1 ,

s.t.
∑n

i=1
ci = 1.

(11)

The loss term and the regularization term of the above formulation (11) are
both non-smoothed, it is difficult to solve this problem with gradient descent
method. Some works solve this problem by replacing the non-smoothed func-
tion with a smooth approximation [11,14]. This method can solve the problem
but will lose some accuracy according to the performance of approximation. To
address this drawback, we propose an optimization algorithm to solve this prob-
lem with better performance. We introduce some additional variables and define
an equivalence problem, which can be solved using alternating direction method
of multipliers (ADMM) [3]. The detailed optimization algorithm is shown in
Algorithm 1. The non-smoothed loss function and regularization term need not
to be approximated in our optimization algorithm, therefore, we can obtain a
better solution. Additionally, each step can be solved efficiently. Consequently,
the objective problem can be solved efficiently with better performance using
our proposed algorithm.
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We first introduce two additional variables a,b and define an equivalence
problem of the original problem (11) as follows:

min
a,b,c

g(a) + λ ‖b‖1 ,

s.t. a = c,b = c,
∑n

i=1
ci = 1.

(12)

Then we use augmented lagrangian method to express this problem as the
following:

min
a,b,c,u

Lρ(a,b, c,u) = g(a) + λ ‖b‖1 + u1(1T c − 1)

+
ρ1
2

(1T c − 1)2 + u2(a − c) +
ρ2
2

‖a − c‖22
+ u3(b − c) +

ρ3
2

‖b − c‖22 ,

(13)

where Lρ(a,b, c,u) is an augmented lagrangian function and 1T is a vector
whose entries equal to one. The problem can be solved in four steps:

I. Fix other variables, update a :
We need to solve the following problem:

at+1 = min
a

g(a) + ut
2(a − ct) +

ρ2
2

∥∥a − ct
∥∥2

2

= min
a

g(a) +
ρ2
2

∥∥∥∥a − (ct − ut
2

ρ2
)
∥∥∥∥
2

2

.
(14)

Then we compute the gradient of the object function with respect to a and
set the gradient to zero. Variable a can be updated as the following:

at+1 = ct − ut
2

ρ2
− 1

ρ2
· ∂g(a)

∂a
. (15)

The gradient of g(a) can be calculated with the chain rule:

∂g(a)
∂a

=
∑

k

ωk · ∂fk

∂ϕ

∂ϕ

∂a
,

∂fk

∂ϕ
· ∂ϕ

∂a
=

{−ykhk, ϕk < 0.5
0, ϕk ≥ 0.5 , (16)

where fk =max(0,0.5-ϕ), and ϕ = yk(1 − aT hk).

II. Fix other variables, update b:
The optimization goal becomes:

bt+1 = min
b

λ ‖b‖1 + ut
3(b − ct) +

ρ3
2

∥∥b − ct
∥∥2

2

= min
b

λ ‖b‖1 +
ρ3
2

∥∥∥∥b − (ct − ut
3

ρ3
)
∥∥∥∥
2

2

.
(17)
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Similar to the process of updating a, we get the update equation of b as follows:

bt+1
i =

⎧
⎨

⎩

zi + λ
ρ3

, zi < − λ
ρ3

0, else
zi − λ

ρ3
, zi > λ

ρ3

, (18)

where z = ct − ut
3

ρ3
, zi is the i-th entry in z, bi is the i-th entry in b.

III. Fix other variables, update c:
We should optimize the following problem:

ct+1 = min
c

ut
1(1

T c − 1) +
ρ1
2

(1T c − 1)2

+ ut
2(a

t+1 − c) +
ρ2
2

∥∥at+1 − c
∥∥2

2

+ ut
3(b

t+1 − c) +
ρ3
2

∥∥bt+1 − c
∥∥2

2
.

(19)

Then we compute the gradient of the object function with respect to c, and
we get:

∂L

∂ci
= ut

1i + ρ1(1T c − 1) − ut
2i − ρ2(at+1

i − ci) − ut
3i − ρ3(bt+1

i − ci), (20)

where ut
1i is the i-th entry in ut

1. By solving a set of linear equations ∂L
∂ci

= 0,
we can get the update equation of c.

IV. Fix other variables, update lagrangian multipliers:
We update the lagrangian multipliers u1,u2 and u3 using the following equa-

tions:
ut+1
1 = ut

1 + ρ1(1T ct+1 − 1),

ut+1
2 = ut

2 + ρ2(at+1 − ct+1),

ut+1
3 = ut

3 + ρ2(bt+1 − ct+1).

(21)

4 Experiment

In this section, we conduct experiments on several landmark datasets from UCI
repository. They are Wine dataset, Balance-scale dataset, Breast-cancer dataset
and Glass dataset. These datasets have been widely used for evaluating the per-
formance of distance metric learning in previous works [4,8,12]. We compared
our proposed methods coefficient-based distance metric learning (CDML) and
semi-supervised coefficient-based distance metric learning (S-CDML) with six
supervised distance metric learning methods and two semi-supervised distance
metric learning methods. The six supervised learning methods are: (1) Regular
euclidean distance metric (Euclidean); (2) Relevant component analysis (RCA)
[2]; (3) Information-theoretic metric learning (ITML) [4]; (4) Regularized dis-
tance metric learning (RDML) [8]; (5) Distance metric learning of large margin
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nearest neighbor (LMNN) [12]; (6) Regularized large margin distance metric
learning (RLMM) [10]. And the two semi-supervised learning methods are: (1)
A semi-supervised distance metric learning (SSmetric) [6]; (2) Semi-supervised
regularized large margin distance metric learning (S-RLMM) [10].

For all datasets, we randomly select 10% of the data as the training set and
the rest is split into two halves as validation set and test set correspondingly.
To avoid randomness, we repeated the random splits for five times and report
the average performance. For all methods, we use the same data with the same
normalization for a fair comparison. In our methods, the base vectors is gen-
erated subject to N (0, 1) Gaussian distribution. All parameters are chosen on
validation set.

4.1 Comparison of Optimization Algorithms

In this section, we compare our proposed optimization algorithm with the opti-
mization algorithm of DTDML. The results are shown in Table 1. From the
results, we can conclude that our proposed optimization algorithm outperforms
the one of DTDML on all the datasets. This demonstrates the effectiveness of
our optimization algorithm.

Table 1. Comparison between our optimization algorithm and the optimization algo-
rithm of DTDML. We evaluate the performance using classification accuracy. Mean
accuracy and the standard deviation are reported.

Dataset Cancer Scale Wine Glass

DTDML 95.15 ± 0.12 82.28 ± 0.41 89.71 ± 0.51 61.24 ± 0.34

CDML 95.82 ± 0.54 86.24 ± 0.58 91.44 ± 0.65 61.86 ± 0.17

4.2 Performance Comparison Between Different Methods

In this section, we compare the performance of our proposed metric learning
methods with that of other state-of-the-art methods. Table 2 summarises the
performance comparison between our proposed supervised distance metric learn-
ing CDML and other six supervised methods. From the results, we can con-
clude that our supervised method CDML outperforms other supervised meth-
ods on all datasets except Wine dataset. Table 3 shows the comparison between
S-CDML and other two semi-supervised methods on different datasets. Our
semi-supervised method S-CDML outperforms other methods on all datasets
except Wine dataset. RLMM and S-RLMM achieve the best performance on
wine dataset in Tables 2 and 3 correspondingly. This is mainly because that
RLMM and S-RLMM utilize both pairwise constraints and triplet constraints
which can provide more information about the distribution of the data. How-
ever, our methods only utlize pairwise constraints. Considering the overall per-
formance, our proposed CDML and S-CDML are demonstrated to be effective.
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Table 2. Comparison between CDML and other six supervised methods. Mean classi-
fication accuracy (%) and the standard deviation are reported.

Dataset Euclidean RCA ITML RDML LMNN RLMM CDML

Cancer 94.55 ± 0.00 94.29 ± 0.00 94.87 ± 0.18 95.39 ± 0.00 95.23 ± 0.17 95.00 ± 0.00 95.82 ± 0.54

Scale 76.68 ± 0.00 80.42 ± 0.00 82.26 ± 1.93 78.94 ± 0.00 83.49 ± 0.44 83.68 ± 0.00 86.24 ± 0.58

Wine 88.64 ± 0.00 64.44 ± 0.00 91.36 ± 0.97 90.12 ± 0.00 91.54 ± 0.56 91.60 ± 0.00 91.44 ± 0.65

Glass 50.00 ± 0.00 50.00 ± 0.00 57.80 ± 0.84 59.80 ± 0.00 54.80 ± 1.09 60.21 ± 0.00 61.86 ± 0.17

Table 3. Comparison between S-CDML and other two semi-supervised methods. Mean
classification accuracy (%) and the standard deviation are reported.

Dataset SSmetric S-RLMM S-CDML

Cancer 95.32 ± 0.00 95.45 ± 0.13 96.25 ± 0.26

Scale 82.69 ± 0.00 83.26 ± 0.00 86.36 ± 0.55

Wine 92.35 ± 0.00 94.56± 0.35 92.84 ± 0.49

Glass 57.80 ± 0.00 61.03 ± 0.00 63.16 ± 0.68

5 Conclusion

In this paper, we propose a novel distance metric learning method by learning a
linear combination of random base vectors to construct the metric. In this way,
we can easily control the complexity of our method by adjusting the number
of random base vectors. We further extend our proposed distance metric learn-
ing method into a semi-supervised learning framework by introducing effective
unlabeled pairwise constraints. Additionally, we propose an optimization algo-
rithm to solve this non-smoothed problem efficiently. Many experiments have
been conducted on several landmark datasets and the results demonstrate the
effectiveness of our proposed methods.
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